2/5a^2+3=11

Simple and best practice solution for 2/5a^2+3=11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/5a^2+3=11 equation:



2/5a^2+3=11
We move all terms to the left:
2/5a^2+3-(11)=0
Domain of the equation: 5a^2!=0
a^2!=0/5
a^2!=√0
a!=0
a∈R
We add all the numbers together, and all the variables
2/5a^2-8=0
We multiply all the terms by the denominator
-8*5a^2+2=0
Wy multiply elements
-40a^2+2=0
a = -40; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-40)·2
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*-40}=\frac{0-8\sqrt{5}}{-80} =-\frac{8\sqrt{5}}{-80} =-\frac{\sqrt{5}}{-10} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*-40}=\frac{0+8\sqrt{5}}{-80} =\frac{8\sqrt{5}}{-80} =\frac{\sqrt{5}}{-10} $

See similar equations:

| 5+13n=-5 | | 5k-k-3k+3=17 | | 15b-15b+2b=14 | | z-z+2z+z-1=5 | | -(7y-1)=4(2y-5) | | s+4s-4s=13 | | 0.80x+0.05(10-x)=0.10(-130) | | 12t+5t+5t-2t-2=18 | | 7.8u-16.39=16.39=16.29+15.4u | | 0.35x+0.05(2-x)=0.10(31) | | -3x=8=6x-2 | | 0.45x+0.05(10-x)=0.10(-3) | | 7.8u-16.39=16.29+15.4u | | -7w+19=5-6w | | 15y-14y+4y+2=17 | | 7k=18+10k | | 13x-2(x+4)=8x+18 | | -10h+20=-4h-15-h | | a=2+3a+7 | | 5s-5s+s-s+3s=9 | | 4x/7=9x+8 | | 15u-5u-18u+3u=5 | | 5-1/2x=+5/8x+2 | | -6-9d=3-10d | | x–6=8 | | 1/2p+2.5=7.5 | | -8r=-9r-16 | | 4t+19=6t+19 | | 1.66=(124-119)/x | | 18g-12g=6 | | -3s=-s-10 | | 9r-10=7r+8 |

Equations solver categories